The vision in mammals - mammals.worldmy.info

Search
Go to content

Main menu

The vision in mammals

About mammals > Sensory systems mammal
Mammalian Vision, cross section of Eye

Most of the 5,000 or so living species of mammals have eyes and, in many, the keenness of their vision (visual acuity) is at least equivalent to that of humans. A few mammals have very limited vision, such as river dolphins (Platanistidae, Lipotidae, Pontoporiidae, and Iniidae) that live in extremely murky water or moles (Talpidae) that live in total darkness; indeed, in some moles, the optic nerve has actually degenerated. In mammals’ eyes, a lens focuses light on the retina, a layer of light-sensitive cells in the back of the eye.

Different chemicals (photopigments) in the cells of the retina convert optical information to electrical signals that are transmitted via the optic nerve to the brain. The retina has two main types of photosensitive cells: rods (that respond to black and white) and cones (that respond to color, which are different wavelengths of light). Color vision in mammals is uncommon, being present mainly in primates, some rodents, and some carnivores. In nocturnal mammals such as any microchiropteran bats, rodents (Muridae), and shrews (Soricidae), rods are often prevalent, while cones may be absent. To these mammals, the world is black, white, or shades of gray. The eyes of some diurnal mammals (for example, primates in the families Lorisidae and Leumuridae, or rodents in the Sciuridae) have both rods and cones, and these mammals can see color. Other mammals such as some cats (Felidae) have color vision, but only perceive a few colors.

Mammals show a range of overlap between the field of view of left and right eyes-this is the degree of binocularity. The position of eyes in the face and the size and shape of the muzzle influence the degree of binocularity. Humans, with eyes side-by-side and no muzzle to speak of, have a high degree of binocular overlap, which means they have stereoscopic vision. Stereoscopic vision allows mammals (and other animals) to locate objects in space with accuracy. This is the ability to perceive depth, which plays an important role in hand-eye coordination. The distance between the eyes also affects binocularity. For example, African elephants (Loxodonta africana) or blue whales (Balaenoptera musculus), with eyes situated on the sides of huge faces, have almost no binocular overlap. In animals such as California leaf-nosed bats (Macrotus californicus), the degree of binocularity depends upon the direction in which the bat is looking. There is minimal binocular overlap when the bat looks down its muzzle, and a high degree of overlap when it looks across the top of its muzzle.

Arboreal animals such as many species of primates (lemurs, galagos, and lorises) tend to have higher degrees of binocularity than more terrestrial species (horses, cows, and pigs, in the orders Perrisodactyla and Artiodactyla, respectively). Finally, in some cases, the significance of binocularity in the animal’s life is not known (for example, in the case of the wrinkle-faced bat, Centurio senex, of South and Central America).

It is common for nocturnal mammals to have a tapetum lucidum behind the retina. The tapetum lucidum is a layer of cells on the back of the eye that reflects light back through the retina, amplifying the stimulation of retinal cells by ensuring one round of stimulation as the light goes through, and another as it is reflected back. Tapeta lucida account for the “eyeshine” when catching a house cat or raccoon (Procyon lotor) in a car’s headlights or in the beam of a flashlight. Pinnipeds (Phocidae, Otariidae, and Odobenidae) and odontocetes (toothed whales and dolphins) also have tapeta lucida for helping gather available light at dark ocean depths, resulting in keen underwater vision. Visual displays from the tapetum lucidum are also common to the communication of diurnal mammals, but require that the individuals be close in proximity to each other.

Back to content | Back to main menu