Evolution and systematics Struthioniformes - animals.worldmy.info

Search
Go to content

Main menu

Evolution and systematics Struthioniformes

Birds > Group of birds > Struthioniformes
Struthioniformes
Struthioniformes

Class Aves
Order Struthioniformes
Number of families
6 families of living birds
Number of genera, species
15 genera; 58 species

While most birds fly, there are several groups of birds that do not fly and have anatomical adaptations for a life on land. Some of the largest living birds make up the group of flightless birds generally called the ratites. Historically, some taxonomists have placed most of these large birds in the order Struthioniformes. Many recent taxonomists have divided the ratite group into separate orders and others into separate suborders or families. Most recently the Handbook of the Birds of the World has once again placed these birds in one large order, Struthioniformes, with several families: Struthionidae, the ostriches; Rheidae, the rhea; Casuariidae, the cassowaries; Dromaiidae, the emus; and Apterygidae, the kiwis. Additionally, the extinct moas, genus Dinornis (Dinornithidae), from New Zealand and the elephant birds, genus Aepyornis (Aepyornidae), from Madagascar and Africa were probably closely related and have been placed in separate orders or families as well. The tinamous, which are included with the Struthioniformes here, may now be considered to be in the group called Tinamiformes. Unlike ratites, tinamous have a keeled sternum and can fly, although weakly. Ratites are mostly located in central and southern Africa, central and southern South America, New Guinea and surrounding achipelagos, Australia, and New Zealand. Ratites were considered to be very ancient birds, more primitive than most other birds. Their anatomical features, once thought to be primitive, led early taxonomists to believe that ratites descended from birds prior to the development of flight.

 

However, if this were true, many of the anatomical features of these birds would not make much sense. The current interpretation is that these birds evolved from birds that could fly, but have developed a number of special adaptations for a non-flying existence. Ratites have wing skeletons that are not fundamentally different from those of flying birds, but are used for purposes other than flying. Ostriches and rheas, for example, use their wings for both courtship and distraction displays. Other ratites such as cassowaries, emus, and kiwis have various degrees of degeneration of the basic wing structures, but their wings are still derived from the basic wing structure of flying birds. Ratite wings still bear flight feathers and coverts in some groups, thus clearly suggesting an origin from flying birds and not directly from bipedal dinosaurs. The increase in size of most ratites has resulted in significant changes in bones, muscles, and plumage. The long, muscular legs of large ratites are well adapted for running.

The emu Dromaius novaehollandiae
The emu Dromaius novaehollandiae

Early taxonomists considered ratite birds to be a good example of convergent evolution on all the southern continents, but as the theory of continental drift emerged and evolved into plate tectonics, it became much easier to assume that ratites arose from common ancestors which became isolated as the continents drifted apart. Most families have evolved in isolation from the others. The only exception to this are the cassowaries and emus, which evolved on the same continent, Australia, but separately in different habitats, so they did not evolve in direct competition with each other.

The emu, following the pattern of the ostrich and rhea, lives in more open grassland, while the cassowary lives primarily in dense rainforest. The debate on the origin and relationship of ratites continues, focusing on the exact level of relationship at the order or a higher level. Taxonomists generally agree that ratites are closer to each other and to tinamous than they are to any other bird groups. One question that has not been adequately answered is why these large flightless birds evolved in only the Southern Hemisphere. The answer to this question may well lie in the fact that major mammal predators evolved mostly in the Northern Hemisphere. bird in New Zealand, where the lack of large mammals may have allowed it to maintain its small size.
The large number of moa species that also developed in New Zealand, and follow the pattern of ostriches, rheas, and emus, fell prey to humans when they arrived, just as the elephant birds did in Madagascar. The evolution of ratites in the absence of large mammalian predators seems to make sense.

However, as with everything there is one major exception, the ostrich. Ostriches must have evolved in Africa with large mammal predators, but to compensate, they developed very large size, acute eyesight, and great speed. However, the ostrich may have evolved in very arid areas where the numbers and varieties of large preda-tors were greatly reduced. Ostriches are also the only ratite to have spread into the Northern Hemisphere even though they have since disappeared from most of their range north of the equator. Fossil records show that ostriches once occurred from Greece to southern Russia, India, and Mongolia.

Back to content | Back to main menu